
R, spatial coordinates; R', radius vector of the center of the trial particle; V, detailed 
velocity; t, time; w, particle diffusion motion velocity; ~, distribution factor; ~, ak0/D; 
$i, aki/Di; F, surface concentration; 6 i, infinitesimals introducedin the definition of the 
structural functions ei; e = 1 - p; p, particle volume concentration; T, %a, time scales; 9, 
concentration perturbation near the trial particle; the asterisk superscript denotes condi- 
tional means, and the subscript denotes equilibrium values of the concentration; the prime 
refers to quantities to be determined at the point R', while the subscripts 0 and 1 refer to 
the continuous and disperse phases, respectively. 
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HETEROGENEOUS MASS-TRANSFER KINETICS UNDER 

DIFFUSION-CONTROLLED CONDITIONS 

V. N. Mankevich and V. G. Markov UDC 536.24:536.423:532.72:541.8 

Calculations have been performed on nonisothermal mass transfer with transport 
characteristics dependent on temperature: velocity, concentration, temperature, 
and mass-transfer coefficient distributions. 

Topics in hydrodynamics and in heat and mass transfer are frequently handled on the 
assumption that the parameters representing the physical properties are constant, whereas 
in fact they are often dependent on temperature, so that assumption is justified only when 
the system is completely or nearly isothermal. If the system is essentially non isother- 
mal, parameters characterizing the physical properties such as the viscosity may vary by 
substantial factors, and it is essential to incorporate the temperature dependence. How- 
ever, then there can be considerable computational difficulties, whereas the corresponding 
isothermal treatment involves a simple analytic formula. Therefore, engineering calcula- 
tions are commonly based on correcting for the nonisothermal situation by formal substitu- 
tion into the theoretical formula for the isothermal case of an effective temperature, which 
is chosen either from rather arbitrary assumptions or from the condition that the numerical 
result agrees with experiment [i]. 

That technique sometimes gives useful results, but it has the essential disadvantage of 
lacking a physical basis. A basis can be provided only by solving the nonisothermal case 
for a sufficiently wide range of external conditions, which is considered here. 

We consider the convective mass transfer from a certain substance (reagent) to a solid 
surface, at which there is a reaction involving the absorption of it, with the reagent dis- 
solved in the surrounding liquid. The flow is taken as laminar and stationary, while the 
transport mechanism is diffusion-limited, so the concentration at the surface can be taken 
as zero. An example is provided by a rotating disk as commonly used in electrochemistry 
[2]. 
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Fig. i. Relationship in dimensionless form 
for the axial velocity component as a func- 
tion of distance from the disk at various 
temperatures: a) t~ = 20~ t w = 20~ (i); 
30 (2); 40 (3); 50 (4); 60~ (5); b) t w = 
20~ t ~  = 20~ ( 1 ) ;  30 ( 2 ) ;  40 ( 3 ) ;  50 ( 4 ) ;  
60oc (5). 

Under isothermal conditions, the hydrodyn~ic part (Karman problem) has a self-similar 
solution, which is represented in terms of functions dependent only on the coordinate nor- 
mal to the disk [3]. This has been used [4] in constructing a solution for the mass trans- 
fer, and for large Sc~idt n~bers Sc = v/D, the as~ptotic result is 

] w :  ~ ;  K=O,620D2/3v-1/6~1/2. ( 1 )  

(i) has been tested repeatedly, and it has been shown [5] that it gives a systematic 
overestimate for the mass transfer coefficient. The error is 3% for Sc = 103 and increases 
with temperature, since the Sc~idt n~ber falls. 

(i) has also been used under essentially nonisothermal conditions [6, 7], when the sys- 
tem has a positive heat flux (T w > T~) or a negative one (T w < T~), and in ~ich the effec- 
tive temperature for D and v is taken either as the temperature at the disk T w [6] or the 
mean temperature in the diffusion boundary layer [7]. 

When there is a t~perature gradient, the par~eters become variable and dependent on 
the spatial coordinates. However, the temperatn=e dependence of the density, specific heat, 
or thermal conductivity for a liquid is very much less than that for the viscosity or diffu- 
sion coefficient, so p, Cp, and % can be taken as constant. Estimates also show [8] that 
thermal-diffusion effects are small in such a system and can be neglected. It is thus as- 
shed that the behavior is governed only by the temperature dependence of the viscosity for 
a liquid and the reagent diffusion. There is however no essential difficulty in incorporat- 
ing all the above factors. 

We now show that if one neglects the viscous dissipation (which is justified for low- 
viscosity liquids such as water), the nonisothermal treatment also has a self-similar solu- 
tion. 

Then the equations of hydrodyn~ics and of heat and mass transfer are 

V . v ~ O ,  

(v. V) v I = - -  ~ VP + v" (vvv) + g, ( 2 )  
9 

pCpv.V T = ~,v2T, 

v . v c  = v ' ( D v c ) .  

We introduce a cartesian coordinate system Oxyz having the Oz axis coincident with the 
axis of rotation, while the flow region corresponds to positive z. We also introduce a 
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Fig. 2. Temperature distributions: a) t~ = 20~ t w = 30~ (i); 
40 (2); 50 (3); 60~ (4); b) t w = 20~ t~ = 30~ (i); 40 (2); 
50 (3); 60~ (4); c) distribution for the relative temperature 
difference (in all cases, the curves lie in the region between 
the curves given in the figure). 

certain standard temperature To, 
dimensionless variables 

at which the kinematic viscosity is v0, and convert to the 

X y Z . 

v ' T  -- To c 
u -  ; O : - - ; c =  

U O coo 

( 3 )  

in which L = ~V0/~ is the length scale, U = ~L = /vow the velocity scale, and G the charac- 
teristic temperature scale. 

We also represent the viscosity and diffusion coefficients as functions of temperature 
in dimensionless form: 

= Vo~(O), D = DoD(O). (4) 

With the (3) and (4) variables, (2) has the solution 

in which f(~), 

u~ = ~ f ( ~ ) - - , q g ( ~ ) ,  u,~ = ~ g ( ~ ) +  "nf ( ; ) ,  u= = - -  h (~ ) ;  0 = 0 (~ ) ;  c = c (~ ) ,  ( 5 )  

g(~), h(~), 0(~) andc(~) satisfy a system of ordinary differential equations 

(-~f')' + hf' = p - g ~ ,  ~g ' ) '  + hg' = 2}g, h' = 2f; ( 6 )  

0" 4- Pr he' = O; (T)c')' + Sc hc-' -- 0 

with the boundary conditions 

f=O, g = l ,  h=O, 0 = % , 7 = 0 ;  ~=0, 
(7) 

[ = 0 ,  g=O,  O=O~, c = l ;  ~=oo.  

The parameters Pr = O~0Cp/X and Sc = v0/D 0 are the Prandtl and Schmidt numbers, which 
relate to T = To; the primes in (6) denote differentiation with respect to ~. As the mass- 
transport treatment does not involve calculating the pressure pattern, the corresponding 
equation is omitted in (6).* 

We see from (6) and (7) that the solution is dependent on four numerical parameters (0 w, 
0~, Pr, Sc) and two functions ($ (e), D (8)), so it is much more coFplicated than for the iso- 
thermal case, where there is only one parameter, the Schmidt number. 

* System (2) is not altered in form by incorporating the temperature dependence of the den- 
sity, as the solution is still as in (5). The effects from free convection involve examining 
the stability of (5), which is not considered here. 
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TABLE i. Dimensionless Diffusion Flux Density Sub- 
ject to Various Boundary Temperatures 

{oo ~ 

tw '~  20 30 40 50 60 

20 
30 
40 
50 
60 

1,000 
1,203 
1,419 
1, C42 
1,867 

1,0l.t 
1,221 
1,440 
1,667 
1,896 

1,028 
1,239 
1,462 
I, 693 
1,925 

I, 043 
l, 257 
l,  483 
1,717 
1,952 

1,058 
1,275 
1,505 
1,742 
1,979 

! 

'3 

T ] I 

02 

Fig. 3. Relative concentration 
distributions: i) t w = t~ = 20~ 
2) t w = 60~ t~ = 20~ 3) t w = 
20~ t w = 60~ 

Here we restrict consideration to effects associated with variation in T w and the tem- 
perature far from the wall T~. 

The boundary-value problem for the quasilinear system represented by the first four 
equations in (6) has been solved numerically by an iterative method; this gave the hydro- 
dynamic functions f, g, and h, as well as the distribution for the temperature e and corres- 
pondingly for the viscosity and diffusion coefficient. The results at that stage were used 
to calculate the reagent distribution and the mass-transfer coefficient by double numerical 
integration for the last equation in (6); the calculations were performed for 8 w and e~ 
from 0 to 0.5 with a step of 0.05. 

The standard parameters were those for water at 20~ O was taken as i00 ~ so for ex- 
ample t = 30~ corresponds to e = 0.i and so on. 

The temperature dependence of the viscosity was approximated as ~(e) = exp(-2.32 e + 
1.09 82), which corresponds well to the tabulated viscosity for water at 20-70~ [9]. The 
D(8) was derived from the Einstein relation [9, i0] D~/T = const, whence D(e) = (i + 0.34 e)/ 
v(e). The Prandtl number was taken as 7, which also corresponds to the properties of water 
at 20~ the Schmidt number was taken as 500, which corresponds to D = 2"10 -9 m=/sec at 20~ 
The program incorporated scope for varying Pr and Sc, and also for modifying ~(9) and D(8). 

Figures 1-3 show the graphs for the axial velocity component, the concentration, and the 
temperature as functions of distance from the disk under various conditions at the disk and 
deep within the liquid. The form of the temperature difference distribution persits (Fig. 
2c), which is evidently specific to a system having moderate Prandtl number. 

The main interest attaches to how the nonisothermal conditions affect the mass-transfer 
coefficient. Table 1 gives the results, where the principal diagonal contains numbers re- 
ferring to isothermal conditions. Any change in wall temperature has much more effect on 
the coefficient than does the corresponding temperature change at depth. For example, a 
rise of 40~ in liquid temperature with a fixed wall temperature of 20~ increases the mass- 
transfer coefficient by only 6%, whereas a fixed liquid temperature and an analogous rise 
in the wall temperature increases the coefficient by almost 90%. For that reason, and also 
because the transport coefficients are not known accurately and there may be effects from 
minor factors, as well as inevitable measurement errors, the effects from changes in temper- 
ature deep within the liquid may not be recorded by experiment [6]. 
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TABLE 2. Values of A in (8) for To = T w and Effective Tem- 
peratures t, for the Viscosity Corresponding to A = const = 
0.620. 

t~ = const ~ 20 ~ 

t~, ~ .. 20 30 40 50 60 
A 0,620 0,622 0,623 0,623 0,622 

t,, ~ 20,0 30,9 41,5 51,6 61,2 

tw =:const = 20 ~ 

t~, ~ 

A 
t,, ~ 

20 30 40 50 60 

O,w 0,617 0,614 0,611 0,608 
20,0 18,6 17,5 16,3 15,1 

3 o 

o# 2 

/~5 0 

4, 
I , .I  I I ~ 1  L ~ 

IPO /0 20 30 AT=T~u-To~ Ip~ /0 20 30 AT=T~EToI 

Fig. 4. Relative diffusion flux densities at the surface 
as functions of temperature difference: a) t~ = const = 
20~ b) t w = const = 20~ i) numerical calculation; 2) 
from (i) with T O = Tw; 3) from (8); 4) from (i) with T 0= 
Td, points from experiment [7]. 

Measurements show that the transfer coefficient increases with disk surface temperature 
[6, 7], so our results agree well with experiment (Fig. 4), and it is thus correct to say 
that the temperature dependence of the diffusion coefficient and viscosity will have a de- 
cisive effect in laminar flow under nonisothermal conditions. 

We finally consider the justification for using (i) in the nonisothermal case. 

If one extends the procedure [4] for deriving (I) to that case, one gets 

nn2/3 --I/6, I/2 K ~  vo ~ ; A ~ 0 , 7 7 6 a  1/3, ( 8 )  

which resembles (i) in being asymptotically true for Sc ~ ~. Here D w = D(Tw), while a is 
the coefficient in h(~) = a~ 2 + 0(~3), which applies for ~ + 0. 

(8) shows that the effective temperature for the diffusio~ coefficient is naturally ta- 
ken as T w. As regards the viscosity, the concept of an effective temperature has no clear- 
cut physical meaning, since it merely defines the linear scale L, which can be selected ar- 
bitrarily. If for example, one defines L from the viscosity at the wall, our A in (8) will 
be variable for a given liquid and dependent on 6 w and 8~, with A = 0.620 for 0 w = 0~. If, 
on the other hand, one selects L such as to keep A = 0.620 constant in (8), then v 0 is cor- 
respondingly variable, as is T o . In each case, these variable quantities should be deter- 
mined by solving the hydrodynamic problem numerically. 

Table 2 shows that the (8) results for a liquid such as water differ little from those 
from the simpler (i) if the effective temperature in the latter is taken as the wall tem- 
perature. However, there is at present no basis for saying that the same will apply for any 
liquid whose properties are very different from those of water, and further research is re- 
quired. 
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We substitute for D and \7 taken at the mean temperature of the diffusion boundary layer 
[7] into (i) to get the best agreement with exact calculations (Fig. 4). However, (I) then 
loses its asymptotic significance and thus the original physical significance. Therefore, 
that substitution may be considered only as a procedure for empirically correcting (i) that 
does not reflect physical regularities in mass transfer under nonisothermal conditions. 

NOTATION 

A and a, coefficients in (8); c, reagent concentration; c = c/c~; Cp, specific heat of 
liquid; D, diffusion coefficient; D = D/D0, f, g, h, dimensionless hydrodynamic functions 
from (5); j, reagent mass flux density; K, mass-transfer coefficient; L, linear scale; p, 
pressure; Pr, Prandtl number; Sc, Schmidt number; T and t, temperature; U, velocity scale, 
u = v/U; v~ velocity vector; x, y, z, cartesian coordinates; ~, ~, ~, dimensionless carte- 
sian coordinates; 0, dimensionless temperature; @, temperature scale; I, thermal conducti- 
vity; ~, viscosity; v, kinematic viscosity; ~ = ~/v0; p, density; ~, angular velocity. Sub- 
scripts: w, values at the wall (disk surface), ~, values deep in the liquid, and 0 to values 
at the standard temperature T o . 
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HEAT TRANSFER IN A PLASMOCHEMICAL REACTOR 

M. V. Lyakin, A. L. Suris, 
and V. M. Postnikov 

UDC 536.24 

An empirical method is proposed for calculating heat transfer in the channel 
in a plasmochemical reactor when the reagents are input via a system of holes 
in the wall. 

There is an extensive class of plasmochemical reactors in which the raw material is in- 
troduced via a system of holes in the cylindrical wall (Fig. i). The heat transfer then 
occurs in an unstabilized flow section and is complicated by the jet mixing, the reaction, 
the recirculation in the mixing chamber, and the considerable temperature differences. 

Measurements have been made on heat transfer here [i] for various geometrical and other 
parameters and in the presence of exothermic reactions. The quantities characterizing the 
heat transfer are: the Stanton number St, Reynolds number Re for a plasma flow, ratio be- 
tween the flow rates of the energy carrier M I and the raw material M2, the ratio of the en- 
thalpy H I in the plasma jet reckoned from 0 K to the enthalpy in the products at the wall 
temperature Hw, the ratio of the length of the heat-transfer section ~ to the channel.diam- 
eter dp, and the ratio of the total area of the holes f= for the raw material to the area fl 
of the reaction channel. One corrects for the reaction heat as regards the transfer via the 
observed relationship by means of the energy criterion proposed by Suris and Shorin [2, 3]: 
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